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A simple model of the mutual interaction 
of parallel flow and cellular motion in a shear layer applied 

to the finite amplitude instability of plane Couette flow 
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Deutscher Wetterdienst, Offenbach, BRD 

(Received 12 October 1977 and in revised form 25 October 1978) 

The disturbing motion of plane Couette and Poiseuille flow is described using three 
parameters: two amplitudes corresponding to the disturbance of the parallel flow and 
the cellular motion, respectively, and the angle q50 which defines the orientation of the 
vortex blobs with respect to the parallel flow. Equations of motion for these parameters 
are obtained using a Ritz-Galerkin method. For Reynolds numbers above a critical 
value sufficiently big disturbances will grow until a steady finite amplitude state 
is achieved. The energy of the disturbance remains finite, in spite of the highly 
truncated field representation using only three parameters. This is possible because of 
the nonlinear dependence of the field functions on #,,. The critical values of Reynolds 
number, above which finite amplitude states exist, are computed for the plane Couette 
flow and the Poiseuille channel flow. 

1. Introduction 
According to a number of investigations the plane Couette flow is stable with respect 

to infinitesimal disturbances (Grohne 1954; Gallagher & Mercer 1964; Davey 1973). 
It is generally supposed that the plane Couette flow is unstable with respect to 
sufficiently large disturbances which must be computed by taking into account 
nonlinear effects. 

The approach to approximate finite amplitude solutions of the Navier-Stokes 
equations was given by Stuart (1958, 1960) and Watson (1960). Explicit calculations 
have been done concerning the instability of the plane channel flow (Reynolds & 
Potter 1967; Pekeris & Shkoller 1969a, b ) .  As expected, these theories provided 
growing finite amplitude solutions for Reynolds numbers in the stable region of the 
Orr-Sommerfeld theory. 

For some of these theories the solutions grow without bourid if the initial disturb- 
ances are big enough. This applies even to theories which do not have an explicit 
small amplitude limitation (Pekeris & Shkoller 1969a, 197 1) .  This unphysical 
behaviour seems to be caused by the coarse truncation of the respective methods. In  
fact, with present-day computers, the number of constants used to describe the field 
for a fixed time always requires some compromises. In  reality the nonlinear effects will 
place a limitation on the amplitude of the disturbance. As pointed out by Zahn et al. 
(1974), a good resolution of the cross-stream structure of the solution will lead to 
limited amplitude solutions in the fluid model. Some of the cross-stream resolution 
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can be saved by using a numerically highly accurate discretization. This was done by 
Herbert (1976) using a method inspired by Orszag (1971). 

However, in view of the arguments given by Zahn el al. (1974), one cannot use too 
few gridpoints in the cross-stream co-ordinate if one wants to obtain disturbed states 
of limited amplitude. In  the model of Pekeris & Shkoller (19693) the unboundedness 
of the disturbance amplitudes seems to be caused by the drastically truncated eigen- 
function representation. In  contrast to this, the resolution in the downstream direction 
seems to have less influence on the physical behaviour of the solution. Zahn et al. (1974) 
obtained steady finite amplitudes solutions using a drastically truncated Fourier 
representation in the downstream direction. 

So far, all computations without explicit finite amplitude limitation and resulting in 
quasi-stationary finite amplitude states were done with respect to the Poiseuille flow. 
Much less is known concerning the nonlinear theory of plane Couette flow. Coffee 
(1 977) investigated the problem by perturbation theory. Because of the explicit finite 
amplitude limitation of this method, the solution was quite inaccurate for small 
Reynolds numbers. Rather as in the Poiseuille flow case, the perturbation theory 
results in a perturbed quasi-stationary solution for every Reynolds number. In 
contrast to this, theories without small amplitude limitation should result in perturbed 
solutions only for sufficiently large Reynolds number. 

The present paper investigates a very simple model of the secondary motion of plane 
Couette and Poiseuille flow, using a Ritz-Galerkin method with only three parameters 
to specify a fluid state a t  a fixed time. Such highly simplified models of fluid motion are 
known for the BBnard convection flow. These models were investigated by Lorenz 
(1963) and Ogura & Yagihashi (1969) for the free-slip boundary case and by Steppeler 
(1978) for the case where all velocity components vanish a t  the boundary. For the 
BBnard flow, it is relatively easy to construct simplified models of the fluid motion, 
because a linear space of test functions turns out to be sufficient. However, for the 
Poiseuille flow the work of Zahn et al. (1974) indicates that, without using a great 
number of dynamic parameters, no quasi-stationary finite amplitude states will be 
obtained with a linear dependence of the test functions on the parameters which 
describe a state. 

Existing models of the secondary motion of the plane Poiseuille flow have, until 
now, used a linear dependence of the field functions on the parameters A,, . . . , A, which 
describe the physical state a t  a fixed time: 

$G, y ,  t )  = c 4(t) #kX, Y ) .  
V 

To represent sufficiently many fluid states, one must use models with a considerable 
number of constants A,, . . . , A,. 

I n  the present paper we will use two amplitude parameters and an angle $o to specify 
fluid states for the plane Couette and the Poiseuille flow. The dependence of the field 
on #o will be nonlinear. Therefore we obtain a great number of linearly independent 
states for different values of #o. 

If a certain profile of the parallel flow is given, this family of states includes those 
which are damped and others which are amplified when treated by the linearized 
equations. The nonlinear interactions cause a transition to linearly stable states for 
sufficiently large amplitudes. Therefore the three-parameter model is able to have 
quasi-stationary finite amplitude states. 
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The particular model, described in 8 3, was motivated by physical considerations. 
The real and imaginary parts of the Orr-Sommerfeld eigenfunction represent two 
systems of vortices which overlap. Similar to the vortex lines in an ideal fluid, the 
centres of these vortices can be expected to rotate around each other for finite ampli- 
tudes. The model was chosen to represent this effect in a rough manner. 

The secondary flow will be assumed to be a system of vortex blobs, which are 
regions of finite extent of the fluid with a cellular motion. Similar flow fields can be 
seen when observing a turbulent shear flow with a moving camera. Parameters which 
describe the relative position of the blobs were introduced as dynamic parameters. 

2. Basic equations and approximations 

incompressible fluid 
We start from the Navier-Stokes equations for two-dimensional motion of an 

1 &+ UUx+ VUv-- Re AU = -px, 

ux+v, = 0; I 
and the boundary conditions for the plane Couette flow 

V = 0, U = + 1  for Y = + 1 ;  

and for the plane Poiseuille flow 

V = U = O  for Y = - t l ,  

Pxdx -+ 2- xz-x l  for ~ ~ - ~ ' , + - c o .  
Re 

We introduce the stream function $ and vorticity 6 by 

and obtain by eliminating P from (1) 
1 

Re 
$t + U A$x + V A$y -- AA$ = 0. 

Defining the operation -x by 

(4) 

and applying this operation to the first of the equations (1) .  When assuming all fields 
to be periodic in the X direction with periodicity length L we obtain for the Couette 
flow 

( 5 )  
5 1 -  

Re 
i7: +my-- UZv = 0; 

ut"+ vuy----uvv = -- 

and for the Poiseuille flow 
x 1 -x 2 - 

Re Re' 
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The undisturbed solution of (1)  and (2) is for the Couette flow 

and for the Poiseuille flow 
U = Y ,  v = o ,  

u =  Y2-1,  v =  0. 

We assume a perturbation motion which is specified by a set of parameters A,, . . . , A,. 
For the Couette flow we use 

$ = 4Y3- Y + $ ( X ,  Y,A,, ..., A%). 

Every choice of a function $(X, Y ,  A,, . . . , A,) will result in a nonlinear model. To 
obtain the time development of A,, . . , , A,, we will use a Ritz method. The least square 
functional Q will be minimized in the limit of small time intervals At. As we consider Q 
in the limit At + 0, it will be possible to neglect terms O(At2) of the functional. The 
method outlined in the following is equivalent to the Galerkin method proposed by 
Vichenevetsky (1969). 

We will use the least square functional 

Q = / t’ At dt ’ /dx dy (All., i- Ilr, A$= - $x A@y - 
t Re 

and apply the test functions given by (7). In  equation (7) A,, . . . , A, are now functions 
from t’. We will consider A,(t) as given and will minimize (8) to obtain A,(t + At) .  The 
use of the least square functional as a variational principle poses some problems 
(Finlayson 1972; Eason 1976). 

Consider (8) as a functional of A(t’)  and take the Euler equations of Q. These will 
turn out to be of second order in t ’ .  A(t)  is given as initial value but this is not enough to 
determine the solution of a second-order equation uniquely. 

It can be shown that these problems disappear when the variation is taken 
sufficiently unrestricted. The Euler equation is equivalent to a variation where 
A,(t’) is kept fixed for t’ = t and t’ = t + At. When keeping A(t’) fixed only for t’ = t ,  the 
variation is equivalent to the Euler equation and an additional initial condition (Eason 
1976). This is sufficient to determine A(t‘) uniquely. 

Instead of using the least square functional for some finite time interval At, we will 
minimize Q in the limit of small At. For small At we put 

A(t’) = A(t )  + (t’ - t )  . A(t)  for t’ E [ t ,  t + At] (9) 

and vary with respect to A,(t). After variation we will make the transition At + 0. This 
means that we must retain only terms O(At)  and can disregard terms O(At2) .  

From (7)  and (8) we obtain for the functional Q, 

Q = /t+Ah’pxdyF(X, 1 Y,Al(t’), ..., A,@’)) 

2 1 
- $ z ( X ,  Y ,  A,, . . . , A,) A$-,@, Y ,  A,, . . . , A,) -Re AA$(X,  Y ,  A,, . . . , A,)) ; ( 1  1) 
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Q will be varied according to 

SQ = /tt+Atdt'Sdxdy- aF 6h,+-S~,. aF 
ah, ah, 

Using (9) we obtain 

The second term in (13) is O(At2). So we can write 

(14) 

To obtain an equation for A,, divide (14) by At, put the coefficients of ah, to zero 
separately and let At + 0. When using the special form of F ,  equation (1  l),  we obtain: 

The arguments X ,  Y ,  h,(t'), . . . , A,(t') of $ were dropped in (15). After performing the 
x- Y integration A, occurs in a linear expression. After solving for A,, . . . , hn (15) is an 
initial value problem for the A,. 

Now suppose that $ in (7) has the form 

II. = h(Y)+#,(Y,A,, * - * , A , ) + A ( X ,  Y,h,+l, . * * i A n ) ,  (16) 

where is the stream function belonging to a parallel flow in the X direction. Now 
(15) will be used to obtain equations only for A,+,, . . . , A,. The equations for A,, . . . , A, 
are obtained by the variation of the least square functional belonging to ( 5 ) .  As a result 
of variation we obtain 

with B = 2 for the plane Poiseuille flow and B = 0 for the plane Couette flow. In  9 3 this 
formalism will be applied to a very simple model of the disturbed Couette flow. 

3. Specification of a simple mode1 
The cellular motion in our model will be represented by three overlapping rotationally 

symmetric vortex blobs. These can be expected to rotate around each other. The test 
functions in (7) are specified in the following manner: 

with 

h( Y )  = +Yz for the plane Couette flow and h( Y )  = hY3- Y for the Poiseuille flow. 
6 is the repetition frequency of the cellular motion, a is the radius of the outer vortex 
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Y = - l  Y = O  Y = l  y = - 1  y = o  y = ]  

FIGURE 1. The relative positions of the vortex blobs. 
(a) Poiseuille flow. ( b )  Plane Couette flow. 

blobs, 7 is the relation of the radius of the outer blobs to that of the centre blob. 
The parameter E' is 1 for the plane Couette flow and - 1 for the Poiseuille flow. The 
relative positions of the three vortex blobs for the two cases are shown in figure 1. 

For the function g( r )  we use a piecewise seventh degree polynomial such that g 
becomes three times differentiable : 

g(r)  = a, + al (T - 1) + a3 (r - q3+ a5 (r - q6 + ( r -  1)' 

a 5 -  - -a- 6 ,  a3=7, a,=-7,, a 0 -L* - 6-' 

(19) 

for r~ [0,2] and g(r)  = 0 otherwise with 

f(y) is defined as a piecewise second-order polynomial which is once differentiable. For 
the plane Couette flow we will use 

f(- Y )  = - f ( Y ) ;  
with a being a fixed parameter and 

- 1  
Y -- &+a 

a"* - a) ' - (4 - a)2' 
Y1= 

For the plane Poiseuille flow we will use 

-1  
with a being a fixed parameter and y - 

- 2a(l-a) '  

The parameters A, A ,  do specify a fluid state and will be used as dynamical variables. 
The parameters r0,  a, 6 are kept fixed. These parameters must be chosen so that no 
choice of do forces a vortex to intersect the lines y = & 1 : 

a+r, Q I, 6 > 2. (22) 
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The equals sign in ( 2 2 )  will lead to the most unstable modes. The equations for h or A,  
q50 are obtained according to (15) and (17), respectively: 

For sufficiently small Reynolds numbers, equations (23) have only one stationary 
solution A = h = 0,  which corresponds to the undisturbed motion. An estimate of the 
critical Reynolds number is given by the smallest Reynolds number for which equations 
(23) have a second stationary solution with A ,  h $. 0. 

Similarly to Zahn et al. (1974), we compute the stationary solutions of the model. 
These solutions separate the amplifying states from those which are damped. We 
consider no solutions which imply profiles of the parallel flow with an overshoot. For 
physical reasons we require the disturbed velocity profile to be monotonic, which 
implies the condition 

A < hm*x, 
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OL= 0.25 
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t n  @ o  0 hn f n  @ o  

FIGURE 2. Plane Couette flow, Re,(a) and Re,(b), as a function of g%o for 
different values of the parameter a and a = 0.5, q = 1. 

withh,,, = l/lfv(0)l for theplaneCouettefl~wandh~,, = 2 4 1  -a)for thepoiseuille 
flow. With h < h m a x  the last equation of (22) gives an upper bound for A to achieve 
stationarity : 

E ro, hrtl,,]. 

Since a 3 1  max is smaller than 10 yo of a33, this term will be neglected in the following 
estimate. Let A,($,) be the value of A which implies 4, = 0. Neglecting a3,h we have 

Now we ask if we can achieve stationary states with h = Amax and A = A,. From the 
first and second equations of (22) we obtain as a condition of stationarity 

and 

with 

and 

I Re 2 Re, 
Re 2 Re,, 

4. Numerical evaluation of the models 
Let us first consider the case that the outer vortex blobs and the centre one have equal 

radius, 7 = 1. Re, and Re, were computed numerically as functions of the angle 6,. The 
result for the plane Couette flow with a = R, = 0.5, = 1 is shown in figure 2 for 
different values of the parameter a. One can see that Re, defines the more critical 
condition than Re,. This was so in all investigated cases. Therefore in the following 
only Re, will be displayed. Figure 3 (a) shows the minimum of the curves in figure 2 and 
figure 3 ( b )  gives the position of this minimum as a function of a. The minimum 
Reynolds number for which secondary motion can occur is slightly above 2500 and 
is obtained for a = 0.27. To show the dependence of Re, on the radius a of the vortex 
blobs, figure 4 shows for a = 0 . 2 7 , ~  = 1 the dependence of Re, on a. Figure 5 shows 
the dependence of Be, min, defined as the minimum of Re, over a and $,, on a. The 
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a =  0.631 

a = 0.481 -b a = 0.562 

v 
t ( a )  

2000 I,,,,, 
0 0.2 0.4 OL 

c 
0 0.2 0.4 (Y 

FIGTJRE 3. Plane Couette flow. (a) The minimum of the curves in figure 2 aa 
a function of a ; ( b ) ,  the position of this minimum. 

1 v O O  4. 4. 

9 0  

FIQURE 4. Plane Couette flow, Re,, as a function of # o  for different 
values of the radius a for g = 1, a = 0.27. 

minimum Reynolds number for which instability is possible is 2500 and the instability 
occurs for a radius a of the vortex blobs slightly above 0.5. 

For comparison, we give also the results concerning the Poiseuille flow. Figure 6 is 
an analogue to figure 2(a )  and gives Re, as functions of q50 for 7 = 1, a = 0.5 and 
differentvalues of a. Re, min, the minimumof the curvesin figure 6, is given as a function 
of a in figure 7. Figure 8 is an analogue to figure 5 and shows fie, the minimum of 
Re, over a and q50, as a function of a. The curves are qualitatively quite similar to those 
corresponding to the plane Couette flow. However, the Poiseuille flow remains stable 
for greater Reynolds numbers than the plane Couette flow. 

With Fourier modes in the downstream direction, as used by Zahn et al. (1974), 
one needs many modes in order to approximate the vortex blobs used here. For the 
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2000 k 
0.4 0.5 0.6 a 

FIGURE 5 .  We, the minimum of Re, over a and #,, 
aa a function of a for 11 = 1. 

0.4 

OL = 0.25 

1 0 3 ~  5 an  ill Qn 

F ~ a m  6. As figure 2 (a), but for the Poiseuille flow. 

Poiseuille flow, the main Fourier mode computed by Zahn et al. (1974) corresponds to 
a flow which is similar to a set of densely packed vortex blobs with 4, = 45" and the 
repetition parameter 6 = 2r0 sin 45". I n  the framework of our vortex blob mechanics, 
it is essential that  the vortex blobs are not so regularly packed, which means 
6 2 2(a+r,) .  A symmetrical configuration of vortices is unstable, because stability is 
possible only for a range of q5, between 0 and in. For other values of $o both the shear 
and the rotation of the blobs around each other would force the vortices into another 
relative position, while for the indicated range of (so these effects compensate each 
other. 

Theories with Fourier modes in the downstream direction need at  least two modes 
to produce an unsymmetric vortex configuration. The main mode computed by Zahn 
et al. (1974) had centre vortices with double the diameter of the two outer ones. This 
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u 1 0 3 ~  
0.5 (Y 

FIGURE 7. As figure 3(a) ,  but for the Poiseuille flow. 

4000 
0.4 0.5 0.6 (1 

FIGURE 8. As figure 5, but for the Poiseuille flow. 

indicates that with our model we may get more unstable modes, when using the centre 
vortex blob with a greater diameter than the two outer ones. The parameter 7 in (18) 
is the relation of the diameter of the outer vortices to that of the centre one. 

Figure 9 shows Re, as a function of go for the plane Couette flow for different values 
of 7. The values of a = 0-51 and a = 0.27 are those which for equal radii had produced 
the most unstable modes. The corresponding diagram for the Poiseuille flow is shown 
in figure 10. The most unstable modes are obtained for 7 = 0.5, corresponding to a 
centre vortex blob with a diameter equal to the width of the channel. 

The critical Reynolds numbers estimated from figures 9 and 10 are 800 for the plane 
Couette flow and 2000 for Poiseuille flow. Considering the relatively coarse model 
assumptions, the latter value is in reasonable agreement with the value 2700, obtained 
by Zahn et al. (1974). 

The estimate of the critical Reynolds number was based on the assumption that the 
most unstable modes for 7 = 0.5 are obtained with the same value of a as for 7 = 1. 
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5 x 1 0 '  

I 03 

0 i n  i n  100 
FI~TTRE 9. Plane Couette flow, Re,, aa a function of q50 for different 

values of 1 and a = 0.51, a = 0.27. 

L \\ 
lo' 

I 03- 
0 a. fn 0 0  

FIGURE 10. As figure 9, but for Poiseuille flow. 

.5xlO2- 
0 a. f. 00 

FIQURE 11. Couette flow, Re,, as a function of go for different 
values of 01 for 1 = 0.5, a = 0.51. 

To check this assumption, figure 11 shows Re, as a function of #o for different values 
of a with 7 = 0.5, a = 0.51 for the plane Poiseuille flow. The corresponding diagram 
for the plane Couette flow is shown in figure 12. The figures indicate that indeed for 
values of about 0.27 the most unstable modes occur. 

5. Conclusions 
In  spite of the simplicity of the model investigated, quasistationary states of 

the secondary motion were obtained. This was possible because of the nonlinear 
dependence of the test functions on the parameter q50, determining the relative 
position of the three vortex blobs. 

The computed critical Reynolds number was for the Poiseuille flow in reasonable 
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FIQURE 12. As figure 11, but for plane Poiseuille flow. 

agreement with that of other computations. For the plane Couette flow the computed 
critical Reynolds number was 800. 

The computation was based on describing a system of vortex blobs by a small 
number of parameters. A parameter determining the position of a vortex blob was 
introduced as a dynamical variable. Because this method needs comparatively small 
computer capacity, it may be useful in more complicated situations, for example the 
computation of the decay of a large vortex blob into smaller ones. 

The comments on the manuscript of several members of the Max Planck Institut 
fur Stromungslehre were appreciated. 
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